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A polymer chain trapped between two parallel repulsive walls:
A Monte-Carlo test of scaling behavior
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Abstract. An off-lattice bead-spring model of a polymer chain trapped between two parallel walls a distance
D apart is studied by Monte-Carlo methods, using chain lengths N in the range 32 ≤ N ≤ 512 and
distances D from 4 to 32 (in units of the maximum spring extension). The scaling behavior of the coil
linear dimensions parallel to the plates and of the force on the walls is studied and discussed with the help
of current theoretical predictions. Also the density profiles of the monomers across the slit are obtained
and it is shown that the predicted variation with the distance z from a wall, ρ(z) ∝ z1/ν , is obtained only
when one introduces an extrapolation length λ in the description, ρ(z) ∝ [(z + λ)/D]1/ν , with λ ≈ 0.35.
An analogous result is also obtained for Gaussian chains (where 1/ν = 2).

PACS. 61.25.Hq Macromolecular and polymer solutions; polymer melts; swelling – 07.05.Tp Computer
modeling and simulation – 61.41.+e Polymers, elastomers, and plastics

1 Introduction

Flexible polymer chains near surfaces and in thin film ge-
ometry find longstanding theoretical attention and also
have important applications [1–3]. Even the dilute case,
where interactions among different chains can be ne-
glected, and only the interactions between an isolated
chain and the confining wall(s) need to be considered, has
intriguing properties which are not yet fully clarified [4–
10], and even less is known about semi-dilute solutions
confined between walls (see e.g. [11,12] for a discussion);
e.g., one of the most basic theoretical predictions is [4]
that near a planar repulsive wall the monomer density
profile has a depletion zone of a width of order of the coil
size, and for distances z from the wall that are small com-
pared to this width the profile increases as z1/ν , where
ν is the exponent characterizing chain linear dimensions
in good solvents (ν ≈ 0.59) [13]. To our knowledge, this
prediction has never been clearly verified either by simula-
tion [5] or by experiment [14] (in simulations [5] studying
monomer profiles near hard walls, only rather short chain
lengthsN ≤ 100 were available; the experiment [14] study-
ing the concentration profile of polymer solutions near a
solid wall dealt with a stiff polysaccharide rather than a
flexible chain).

In the present paper, we address this problem again by
Monte-Carlo simulation of a suitable off-lattice model [8,9,
15], as well as a number of related predictions. Of particu-
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lar interest is the recent relation due to Eisenriegler [10] for
the force exerted by the polymer on the wall and the cor-
responding monomer density close to the wall, and related
scaling predictions how this force changes as a function of
the distance D between two confining walls. We recon-
sider also the problem how the polymer linear dimensions
change with confinement [9,16–18].

The outline of this paper is as follows: in Section 2, we
briefly recall the scaling predictions and in Section 3 we
describe the model and make a few comments on the sim-
ulation technique; Section 4 then presents our results on
the linear dimensions of the chains and the force on the
wall as functions of the two basic variables, distance D
between the walls and chain length N . Section 5 then de-
scribes our results for density profiles and pressure profiles
near the walls. Section 6 then summarizes our conclusions.

2 Summary of scaling predictions

We consider two parallel impenetrable walls a distance D
apart and orient our coordinate system such that the bot-
tom wall coincides with the xy-plane containing the origin,
while the z-axis is perpendicular to both walls and the top
wall then is encountered for z = D. For an isolated chain
in between these walls under good solvent conditions, we
can write scaling relations for the chain mean square gy-
ration radius components parallel (‖) and perpendicular
(⊥) to the walls [16]

R2
g‖ =

2

3
R2
gbR̃‖(D/Rgb), (1)
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R2
g⊥ =

1

3
R2
gbR̃⊥(D/Rgb), (2)

where R2
gb is the mean square gyration radius in the bulk,

which scales as

R2
gb = b2N2ν , N →∞. (3)

b being some (microscopic and non-universal) length,

while R̃‖, R̃⊥ are universal scaling functions. The fac-
tors 2/3, 1/3 have been arbitrarily chosen to have a sim-
ple normalization of these scaling functions in the limit
D→∞ where one must recover bulk behavior and hence
(ζ ≡ D/Rgb)

lim
ζ→∞

R̃‖(ζ) = lim
ζ→∞

R⊥(ζ) = 1. (4)

In contrast, in the inverse limit of narrow slits, ζ � 1,
Rg⊥ cannot exceed D and thus we conclude

R̃⊥(ζ � 1) = c⊥ζ
2 (5)

where c⊥ is a universal constant, and the power ζ2 en-
sures that in this limit Rgb cancels out. Most interesting, of
course, is the parallel component, since there a crossover to
two-dimensional behavior must occur; R2

g‖ ∝ N
2ν2 , where

the exponent ν2 = 3/4 is known exactly [19]. This behav-
ior implies

R̃‖(ζ � 1) = cIIζ
−2(ν2−ν)/ν (6)

and hence for D � Rgb the parallel component of the
mean square gyration radius behaves as

R2
g‖ =

2

3
D2

(
b

D

)2ν2/ν

cIIN
2ν2 . (7)

cII in equations (6, 7) being another universal constant.
It should be emphasized, however, that all these relations
neglect corrections to scaling, and hence are only asymp-
totically valid in the limit where both D� b and Rgb � b.

Next we consider the monomer density profile ρ(z),
which is predicted to scale as follows [4,10].

ρ(z) =
(
R

1/ν
gb /D

)
X̃ (z/Rgb, D/Rgb) , (8)

with X̃ another universal scaling function. In the limit
where Rgb →∞ at fixed D equation (8) should reduce to
a limit where Rgb has cancelled out from the arguments
of the scaling function, and hence

ρ(z) = R
1/ν
gb D

−1X̃I(z/D), Rgb � D. (9)

with X̃I being another universal scaling function, while
in the opposite case Rgb � D and z � D we can con-
clude that the profile near the left wall should approach a
limiting form characteristic for the semi-infinite system,

ρ(z) = R
1/ν
gb D

−1X̃II (z/Rgb) , Rgb � D. (10)

Note that here we have followed the convention of Eisen-
riegler [10] to normalize the monomer density by the poly-
mer density nb (number of polymer chains per unit vol-
ume) of the bulk polymer solution in the system, such
that a sensible single-chain limit can be taken. The to-
tal density resulting from equation (10) is of the order

R
1/ν
gb nb ∝ Nnb which is a sensible normalization of the

monomer density in the dilute solution, of course.
Considering now the limit z/Rgb � 1 in equations (8,

10) it has been argued [4,10] that a simple power law
ρ(z) ∝ z1/ν results,

ρ(z) =
1

D
z1/νX̃III(D/Rgb)→

1

D
z1/νcρ for D→∞,

(11)

with X̃III being another universal scaling function, and
cρ another universal constant, respectively. Of course, it
is understood that z should still be large in comparison
with microscopic lengths, and this makes the observability
of this regime difficult.

A qualitative explanation of equation (11) is that for
z = Rgb there should be a smooth crossover from the
power law to the average density due to the polymer
chain confined between the walls, which is simply N/D
(for our single chain problem, density is not normal-
ized per volume but per volume divided by the area of
the walls, to obtain a sensible limit). Using now equa-
tion (3) we find from equation (11) from this argument
ρ(z = Rgb) ≈

1
D
b1/νNcρ ∝ N/D, as required.

The last quantity that we discuss is the mean repul-
sive force f exerted on the wall. For a single chain this is
defined taking the derivative of the logarithm of the chain
partition function with respect to the position of the wall
(in the −z direction). In the case of a semi-infinite system
exposed to a dilute solution of polymer chains at polymer
density nb, one can equate the pressure on the wall to the
pressure in the bulk which is simply given by the ideal gas
law (nbkBT ). The conclusion then is that [10]

ρ(z)/z1/ν = Bf/kBT , z � Rgb, z � D (12)

where B is an universal constant which is very close to
two. Combining equations (11, 12) we can also write

f/kBT =
1

D
B−1X̃III(D/Rgb). (13)

In the wide slit limit, D� Rgb, X̃
III tends to the constant

cρ and thus f/kBT ∝ 1/D. In the narrow slit limit, one
expects that the force becomes ultimately proportional to
the chain length N and hence X̃III for D � Rgb must
behave as [10]

X̃III(D/Rgb) ∝ (D/Rgb)
−1/ν

. (14)

3 The model and the simulation technique

For the sake of simulation efficiency, we use a coarse-
grained bead-spring model [8,9,12,15] where each effec-
tive bond is described by the Finitely Extensible Nonlin-
ear Elastic (FENE) potential, where the bond length l
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can vary between lmin = 2l0− lmax and lmax, l0 being the
preferred distance,

UFENE(l) = −
1

2
K(lmax − l0)2

× ln
{

1− (l − l0)2/(lmax − l0)2
}
. (15)

We choose lmax = 1 as our unit of length, l0 = 0.7, so that
lmin = 0.4, and the reduced spring constant K/kBT = 40,
i.e. rather large so mostly l does not differ much from l0,
and the potential is nearly harmonic (U ≈ K(l − l0)2/2).

The chains are treated as fully flexible, neither bond-
angle potentials nor torsional potentials occur. The non-
bonded interaction between the beads is represented by a
Morse potential,

UM(r)/εM = exp
[
−2α(r − rmin)

]
− 2 exp

[
−α(r − rmin)

]
.

(16)

with parameters εM/kBT = 1.0, α = 24, rmin = 0.8.
This potential may look rather special, but it turns out
that it is particularly computationally convenient: the de-
cay of this potential with distance is so rapid [15], that
UM(r) ≈ 0 for r > 1 with negligible error; this allows the
use of a link-cell algorithm with a cell linear dimension of
unity and leads to a reasonably fast performance of our
Monte-Carlo program. Using the more common truncated
and shifted Lennard-Jones interaction [17,20] would dete-
riorate the program performance. Since the Theta tem-
perature [13] where a single coil in dilute solutions in the
bulk behaves as an ideal random walk occurs for T = 0.62
in the present model [15], choosing units εM = 1, kB = 1,
our choice of temperature T = 1 implies that we work
in the good solvent regime, basically equation (16) acts
as an excluded volume interaction with a range slightly
smaller than rmin. These choices of parameters also en-
sure that the approach to the scaling regime, where simple
power laws such as equation (3) hold, is rather rapid for
the present model. The fact that the present model is well
tested and its properties in the bulk have been extensively
studied [15], also at semidilute concentrations and in the
melt, is a further argument in favor of the choice of this
model. In particular, preliminary results for some proper-
ties for small values of slit thickness D and short chains
have been reported already [9].

Monte-Carlo sampling of configurations is done by se-
lecting a bead at random for an attempted move, which
consists of choosing displacements ∆x, ∆y, ∆z drawn uni-
formly from the intervals −0.5 ≤ ∆x, ∆y, ∆z ≤ +0.5.
From this trial position rI = r + ∆r (where ∆r =
(∆x,∆y,∆z)) of the monomer and the specified poten-
tials equations (15, 16), the transition probability W is
computed as usual [21] from the energy change∆U caused
by this trial move,

W = min [1, exp (−∆U/kBT )] . (17)

The attempted move is accepted only if W exceeds a
random number η, uniformly distributed in the interval
0 ≤ η < 1. The performance of this algorithm is about

(a)

(b)

Fig. 1. Snapshot pictures of chains of length N = 128 confined
between two repulsive walls at a distanceD = 4 (a) andD = 16
(b). Each bead is represented by a sphere of diameter 0.8, while
the springs between the beads are not shown.

5× 104 attempted updates per monomeric units per CPU
second on workstations such as IBM RS 6000/370. We
choose system linear dimensions L× L×D, with D = 4,
8, 16, 32 (unlike previous work [9,17] where D was much
smaller and thicknesses of order D = 1 were included, i.e.
slit thicknesses of the order of the bond length, for which
case it is doubtful that one should expect the scaling be-
havior as described in Sect. 2). In the x and y directions
parallel to the walls, periodic boundary conditions were
used. Chain lengths used were N = 32, 64, 128, 256 and
512, and the lateral linear dimension typically was L = 64
(only for N = 512 and D = 8, 16 , 32 a smaller size,
L = 32, was used for technical reasons). Typical accep-
tance rate for the moves described above is about 13%,
while for the case of Gaussian chains with the interaction
in equation (16) turned off the acceptance rate increased
up to 30% (such chains without excluded volume inter-
action were studied for comparison in some cases). Typ-
ical length of individual runs was 107 Monte-Carlo Steps
(MCS) per monomer, and 20 independent runs were made
for each combination of parameters (N,D), allowing a re-
liable estimation of statistical errors. Figure 1 gives a pic-
torial impression of the chain configurations generated.

Finally we remark that the pressure tensor is obtained
from the virial theorem [12,22]

ραβ(z) = ρ(z)kBTδαβ

− (6V )−1
∑
i6=j

(rij)α
∂U(rij)

∂(rij)β

[
δ(zi − z) + δ(zj − z)

]
(18)
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Table 1. Linear dimensions of the chain and force on the walls.

D N R2
g‖ R2

g⊥ R2
‖ R2

⊥ f

128 38.54 0.739 274.0 2.126 1.76

4 256 124.8 0.751 943.9 2.122 3.38

512 291.7 0.763 1802 2.125 7.35

128 30.06 2.391 199.7 7.839 0.421

8 256 70.67 2.597 509.5 7.841 0.733

512 217.1 2.735 1627 8.029 1.484

512 (g) 129.6 2.451 917.7 7.503

128 25.51 6.373 165.7 28.7 0.111

16 256 62.14 8.398 422.0 29.54 0.179

512 140.8 9.423 797.2 29.91 0.917

512 (g) 94.70 8.325 671.7 30.38

128 23.74 10.09 151.6 59.84 0.0403

32 256 55.07 18.65 349.0 99.11 0.0573

512 120.1 29.12 719.6 114.8 0.0868

512 (g) 75.36 18.75 499.5 87.13

where U(rij) is the sum of all potentials, equations (15,
16). The pressure on the walls equals the average pressure
in the film in thermal equilibrium. The force due to the
polymer is then obtained multiplying by the area L2 of
the system.

4 Linear dimensions of the chains and force
on the wall: test of scaling behavior

In Table 1 we summarize the numerical results found in
the present work for the parallel and perpendicular parts
of the mean square gyration radius, R2

g‖ and R2
g⊥, as well

as the corresponding components of the end to end dis-
tance, R2

‖ and R2
⊥, and finally we show the force on the

walls, f (remember our choice of units, kB ≡ 1, and tem-
perature T = 1). Only chain lengths N > 128 are included
here, and in a few cases results for Gaussian chains [la-
belled as 512(g)] are included for comparison. Note, how-
ever, that the statistical errors of the present calculations
are still rather large for the parallel components, the er-
ror there may already affect the second digit shown, while
for the perpendicular components and the pressure it only
affects the third digit.

The rather large errors (particularly for the parallel
components) introduce also some scatter in the scaling
plots, Figures 2, 3 and 4. Thus the deviations from scal-
ing in Figure 2 are presumably simply due to these sta-
tistical errors, while in the force data some systematic
effects are clearly visible, although the general trends of
the scaling functions do follow the theoretical predictions
sketched in Section 2, as shown by the straight lines show-
ing the asymptotic slopes of the scaling functions. We have
no clear explanation why in the force data there are still
rather pronounced corrections to scaling present. At this
point, we mention that Webman et al. [17] have studied
the scaling of the radii (analoguous to our Figs. 2, 3) for

Fig. 2. Plot of the normalized parallel component of the mean
square gyration radius, R2

g‖/R
2
gb, open symbols, and end-to-

end distance, R2
‖/R

2
gb full symbols, versus the ratio D/Rgb

(chain lengths N = 128, 256 and 512 are distinguished by
different symbols. Dashed straight line indicates the asymp-
totic slope of the scaling function for small D/Rgb, namely
−2(ν2 − ν)/ν.

Fig. 3. Same as Figure 2, but for the perpendicular compo-
nents. Dashed line indicates the asymptotic slope for small
D/Rgb, namely 2.

much shorter chains (20 ≤ N ≤ 80) and thinner slits
(0.68 ≤ D/a ≤ 6.74, where a is the bond length of that
model) and found rather good agreement with the scal-
ing description. It would be interesting to study also the
pressure on the walls, using the model of [17].

5 Density profiles for single chains in a slit

Figures 5 to 9 show the main results of the present in-
vestigation, namely the density profiles, plotted in log-log
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Fig. 4. Scaling plot for the force, Df versus D/Rgb. The
dashed straight line indicates the slope that the scaling func-
tion should exhibit for small D/Rgb.

Fig. 5. Density profiles ρ(z), normalized by the density ρ(D/2)
in the center of the slit, on a log-log plot versus the modified
relative distance from the left wall, (z + λ)/D. Here the ex-
trapolation length λ = 0.35. Four thicknesses of the slit are
included, as indicated. Dashed line gives the predicted power-
law behaviour, [(z + λ)/D]1/ν . Inset shows the same data but
plotted versus z/D, i.e. without taking an extrapolation length
into account. Chain length is N = 512.

form to check for the power law, equation (11). As it is seen
from the “raw data” presented in the insert to Figure 5,
the data for z/D� 1 settle down to constant values, and a
region where z/D is still small and a power law is seen can-
not be easily identified. This observation does not mean,
however, that the theory outlined in equations (8−11) of
Section 2 is wrong – this scaling theory is expected to hold
only for distances z “large on the microscopic scale” [10].
Studying such a regime where z is very large in compar-
ison to microscopic scales, but very small in comparison

Fig. 6. Same as Figure 5 but for N = 256.

Fig. 7. Same as Figure 5 but for N = 128.

with D as well as Rgb, is very hard with simulations, it
does require to choose both N and D extremely large.

Fortunately, to leading order the effects of the mi-
croscopic scale can be incorporated in the treatment by
using the concept of the “extrapolation length” [23–25],
well known from the theory of surface effects on mag-
netic phase transitions (which are equivalent to the case
of polymers at surfaces [2,5,10] in the framework of the
mapping [13] to the n-vector model of magnetism in the
limit n → 0). This means that in equations (11, 12) the

power z1/ν should be replaced by (z + λ)
1/ν

. For z � λ,
of course, this correction does not alter the description
of the scaling behavior. But as Figure 5 shows, fitting λ
such that the bending to horizontal plateaus seen in the
insert just disappears gives a straightforward fit to the law

ρ(z) ∝ (z + λ)
1/ν

over a wide parameter range.
The value obtained for λ, λ = 0.35, has an obvious

physical interpretation in our model since this is just one
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Fig. 8. Log-log plot of normalized density profiles vs.
(z + λ)/D for D = 32, for three chain lengths as indicated.
Broken straight line indicate the behavior [(z + λ)/D]1/ν .

Fig. 9. Log-log plot of the density profiles ρ(z), normalized
by ρ(D/2), plotted vs. (z + λ)/D for the case N = 512,
D = 32, and comparing chains with excluded volume inter-
actions (Eq. (16)), circles, and chains without them, trian-
gles. The extrapolation length λ = 0.35 was used for both
cases. Straight lines show the predicted slopes. Insert shows
ρ(z) vs. z, including also the corresponding analytical result
(2/D) sin2(πz/D) for Gaussian chains with the boundary con-
dition ρ(z = 0) = 0.

half of the preferred bond length, l0 = 0.7, cf. equa-
tion (15). Of course, for this concept of an extrapolation
length to make sense, it is of crucial importance to show
that λ indeed is a microscopic length, i.e. it cannot de-
pend on mesoscopic parameters like the slit width D and
the gyration radius Rgb (or the chain length N , respec-
tively) of the polymers. Figures 5–8 demonstrate that this
requirement indeed is very well fullfilled, and for large D

Fig. 10. Distribution of the local pressure P (z) ≡
∑
α pαα(z)

as a function of the distance z from the left wall across the slit,
for the case N = 512, L = 32, D = 8. The horizontal dashed
line indicates the resulting average pressure, need to obtain the
force f in Figure 4 (f = PL2).

and large N the correct slope 1/ν can be seen over a full
decade in (z + λ)/D.

To test this concept of the extrapolation length fur-
ther, we also simulated Gaussian chains by turning off the
Morse potential, equation (16), but keeping the FENE-
potential equation (15) between the beads. Figure 9 shows
that also in this case the same choice of λ = 0.35 is needed
in order to verify ρ(z) ∝ (z + λ)

1/νMF = (z + λ)
2

over a
wide range (remember νMF = 1/2). The asymptotic result
for Gaussian chains in a narrow slit, where λ is neglected,
namely [10] (note that in Fig. 9 the integral of the density
was normalized to one rather than to N)

ρ(z) =
2

D
sin2(πz/D) (19)

deviates from the observed density profile markedly, even
for Gaussian chains as long as N = 512 beads! This obser-
vation shows again that for many phenomena of interest it
is not only important to consider some asymptotic scaling
law, but it is important to understand how effects on short
length scales change the picture. We feel that Figures 5–9
demonstrate clearly that the use of a suitable extrapola-
tion length is an adequate procedure for monomer density
profiles of dilute polymer solutions near hard walls.

Our calculations not only yield density profiles but
also pressure profiles, though with less accuracy (Fig. 10).
These data were used to obtain the average pressure in
the slit and hence the normal force on the wall. It should
be noted that in regions with a strong density variation
the local pressure P (z) can become negative (this happens
also for the local pressure in a gas-liquid interface accord-
ing to the van der Waals-Cahn-Hilliard type description of
such an interface [26]), and hence it is not too surprising
that here this happens close to the wall. In the wide slit
limit D/Rgb � 1, we would expect that the density ρ(z)
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Fig. 11. Log-log plot of the effective interface tension γI plot-
ted vs. the density ρcenter in the center of the slit (from the

density ρ(z) normalized as
∫D
O
ρ(z)dz = 1 as shown in Fig. 9

ρcenter is obtained as ρcenter = ρ(z = D/2)N/L2). Data for
semidilute solutions for N = 32 from Pandey et al. [12] are
included.

for z > Rgb but z < D − Rgb is essentially constant, rep-
resenting a dilute polymer solution at a density close to
N/(DL2) in the slit. For this limit, it is of interest to ob-
tain the surface free energy associated with the repulsive
wall from [12,27]

γI =
1

2

∫ D

O

dz
[
pzz(z)−

(
pxx(z) + pyy(z)

)
/2
]
. (20)

Figure 11 shows a log-log plot of the data obtained for γI
from equation (20) as function of the density in the center
of the film. Data from Pandey et al. [12] for a multi-chain
system with N = 32 are included. While in the latter sim-
ulation actually a homogeneous situation in the center of
the film was established, where pzz(z) = pxx(z) = pyy(z)
independent of z for some region in the center of the slit,
this is not the case here (the data of Fig. 11 refer in part to
the narrow slit limit D/Rgb . 1 rather than the wide slit
limit D/Rgb � 1, and therefore pzz(z) 6= pxx(z) = pyy(z)
even in the center of the slit). It is seen that the data
for γI obtained in this way scale as γI ∝ ρκcenter with an
exponent κ approximately equal to 1/ν ≈ 1.695.

Finally we return to the question of the universal con-
stant B defined in equation (12). Since we have seen that
it is appropriate to introduce the extrapolation length λ
as a correction in the density profile, we define (Rx ≡√
〈R2〉/3, 〈R2〉 being the mean square end to end distance

in the bulk) [10].

Beff =
(
R1/ν
x /N

)
ρ(z)/

[
(z + λ)

1/ν
f/kBT

]
. (21)

Normalizing the densities such that
∫ D
O
ρ(z)dz = N , we

hence obtain for D = 32 that Beff (N = 128) ≈ 2.48,

Beff (N = 256) ≈ 2.53, and Beff (N = 512) ≈ 2.68,
while for D = 16 we get Beff (N = 128) ≈ 2.85,
Beff (N = 256) ≈ 3.44, Beff (N = 512) ≈ 3.46, and still
larger values result for D = 8, Beff (N = 128) ≈ 3.67,
Beff (N = 256) ≈ 4.19, Beff (N = 512) ≈ 4.12. Thus all
these estimates for Beff have the same order of magni-
tude, but they are not universal. There is a systematic de-
crease of Beff with increasing D. Presumably the correct
value for the universal number B is only obtained if one
considers the limit D→∞ and still longer chains. In view
of these problems, it is of course premature to compare
Beff to the estimate of Eisenriegler (which is B ≈ 1.85,
in first order expansion in ε = 4−d) [10]. Plotting Beff
versus 1/

√
D a rather rough linear extrapolation is pos-

sible which would yield an extrapolated result B ≈ 1.4.
Clearly, more simulation work is possible to resolve this
problem, and also an ε-expansion result to higher order
would be very desirable.

6 Conclusions

In this paper, the depletion of the density profile of very
dilute polymer solutions near hard walls has been studied
by Monte-Carlo simulations of a (coarse-grained) bead-
spring model of polymer chain confined in a slit. It was
shown that the density profile can be described by a power

law, ρ(z) ∝ (z + λ)
1/ν

, where the extrapolation length λ
is independent of both chain length N and slit width D,
but is a nonuniversal length that depends on the charac-
teristics of our model (and the details of the wall-monomer
interaction, of course, which in our case was purely repul-
sive). Even for our longest chains (N = 512 beads), a limit
λ� z � Rgb cannot be reached, and no power law could
be identified without taking the extrapolation length into
account. Since each effective bond of our chain is compa-
rable to the persistence length of a real chain, comprising
several chemical monomers, it is clear that also in real sys-
tems containing polymers with a degree of polymerization
of the order 103 to 104 the analogous correction due to an
extrapolation length will not be negligible either.

We have also studied the scaling behavior of the paral-
lel and perpendicular chain linear dimensions of the chain
confined by the slit, as well as for the force f exerted on
the walls. Within some scatter – part of it is statistical
but part is systematic due to corrections to scaling – the
proposed scaling relations are satisfied (Figs. 2–4). Un-
fortunately, we have not been able to study the wide slit
limit where Df is independent of D, and thus meaningful
estimates for the universal amplitude B defined by Eisen-
riegler [10] could not yet be obtained.
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